
PREPRINT – NOT YET PUBLISHED 

Lessons from a human-in-the-loop machine learning approach for planning: 
identifying vacant, abandoned, and disinvested properties in Savannah, 
Georgia.  
 

Abstract  
Addressing issues with vacant, abandoned, and disinvested (VAD) properties is important for 
maintaining a healthy community housing stock. Yet, the process of identifying these properties 
can be difficult. Here, we create a human-in-the-loop machine learning model and apply it to a 
parcel-level case study in Savannah, Georgia. Our model reveals that tax delinquency, code 
violations, and crime history best predict VAD properties, and it identifies differences between 
machine vs. human generated results. The resulting model uses expert knowledge and statistical 
learning to streamline the process of identifying and managing VAD properties and 
subsequently, helps staff design comprehensive plans.     

 
Introduction 
Over time, neglected structures and land in communities degrade into unusable or unsafe 
infrastructure. This process adversely affects public health and welfare and can increase crime 
and lower property values. To protect and support growth in communities, local jurisdictions try 
to identify these vacant, abandoned, and disinvested (VAD) properties. However, identifying VAD 
properties, i.e., recording their location, is not a simple task: there is no national database nor a 
standardized definition with which to detect VAD properties, and as such, cities typically rely on 
block-by-block field surveys to count VAD properties (Mallach 2018). Some cities have attempted 
to use advanced techniques like spatial decision support systems (SDSS) and machine learning 
models to find VAD properties from large datasets, but in discussion, emphasize the technology 
itself rather than the combination of human, technology, and data (Hill et al. 2003; Appel et al. 
2014; Hillenbrand 2016; Reyes et al. 2016).    
 
In this work, we build a human-in-the-loop machine learning model (HILML) for the City of 
Savannah, Georgia, and work with housing officials from Savannah’s Housing and Neighborhood 
Services Department (HNSD) and the Chatham County / City of Savannah Land Bank Authority 
(LBA) to identify VAD properties for government acquisition and eventual redevelopment as 
affordable housing. In the model, each property is associated with civic variables (such as code 
violations, tax, and crime etc.) collected using census and municipal data records stored in GIS 
and databases. The goal is to predict whether a property is VAD, through a ‘learned’ combination 
(calibrated by human insights) that indicates which variables best predict VAD status, thus 
integrating human expertise and ‘common sense’ thinking into a computational process. 
 
The research questions at hand are centered on model prediction power and real-world utility. 
First: What combination of a-priori variables best predict whether a property should be classified 
as VAD? Second: How does a human-in-the-loop machine learning approach improve (or not 
improve) the city’s current methods to identify VAD properties?  
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The resulting model correctly predicted labels (i.e., VAD or Not VAD) for 5,327 parcels with about 
90% confidence on structureless parcels and 87% confidence on parcels with structures. The 
number of years and lost value of unpaid taxes associated with the property were the most 
important variables for predicting VAD status, followed by the number of crimes and number of 
code violations. We found a difference in what the ML model and the human experts would 
classify as VAD: machine-generated predictions covered a wider range of neighborhoods beyond 
the scope of human experts’ field survey (i.e., driving to a few target neighborhoods with many 
highly ranked VAD properties and rate properties based on visual cues that align with legal blight 
criteria). The model also reports more VAD properties that are tax delinquent, prone to crime, 
and in neighborhoods with various income levels, while human experts tend to identify 
properties with visual cues (i.e., dilapidated roofs, boarded windows) and low property value 
(i.e., in low-income neighborhoods).  
 
This research has three specific features that distinguish it from existing ML-based parcel-finder 
models in the literature: 1) a human-in-the-loop approach to train the model with “active 
learning” techniques that incorporate local experts’ tacit knowledge, 2) interpretable ML 
methods to find discrepancy in expert-labeled data and build consensus, and 3) empirical 
analyses of human and machine biases in identifying VAD properties to prompt further actions. 
As such, a contribution of this work is a method for helping mitigate and improve the condition 
of municipal properties and preempt deterioration that adversely affects neighborhoods and 
residents. The method provides insights on the property level rather than the neighborhood 
level where traditional analyses based on Census data often lack granularity. Another 
contribution of this case study is to exemplify the development of a civic technology that balance 
the pursuit of efficiency as well as collaboration, context, and bias awareness. While our model’s 
results may not be generalizable to all communities, the process of academic-practitioner 
collaboration and training a model using tacit knowledge and decentralized databases can serve 
as a guide for planning practices.  
 
The manuscript proceeds as follows. We first review literature on property vitality and 
intervention. We then describe our case study, dataset, and methods. Then, we report on 
results, followed by a discussion on ‘success stories’ and ‘lessons learned’.  Although this case 
study is centered on one municipality, we describe how our results can be extended and 
implemented in other locales.   

 
Background / Literature Review 
Characteristics of VAD Properties 
Vacant, abandoned, and disinvested (VAD) properties are properties (parcels) that exhibit 
physical deterioration and neglect, which often negatively impacts the surrounding area. To our 
knowledge, there is no known universal definition of VAD (or blighted) properties, likely because 
such properties are often described to suit a specific purpose: raising awareness for substandard 
low-income housing, supporting massive demolition for urban renewal, revitalizing downtown 
through eminent domain, or revealing the impacts of mortgage crises (Schilling and Pinzon 
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2016). In some of these usage contexts, VAD properties are associated with “blight” which has 
been criticized as a stigmatizing term for properties and their neighborhoods (Mallach 2018), so 
we use the term VAD. VAD properties often have more than one of the following features: 
vacancy, property code violations, tax delinquency (Hillier et al. 2003), and are the site of public 
nuisances (e.g., drug crime or fire damage) (Schilling et al. 2015). One feature alone may not 
imply VAD status: for example, a house can be vacant but still well-maintained or delinquent in 
tax but occupied by low-income families. Therefore, the definition of VAD must be examined in a 
local context. VAD properties may also have lower property values compared with those in the 
same block, as found in research comparing sales price of foreclosure properties and the 
neighboring occupied units (Sumell 2009; Whitaker, Stephan, and Fitzpatrick 2013). Yet in 
practice, property value can be slow to update and vary significantly based on property 
attributes and thus not a stable indicator for VADs.    
 
Causes and Impacts of VAD properties  
A property can become disinvested as a result of macroeconomic and demographic shifts, a 
housing market failure, and public and legal policies. In the U.S., historically, an increasing 
number of properties have faced degradation since 1960s due to the demographic shifts in the 
inner city and the cost to maintain housing (e.g., mortgages) exceeding its value. This trend 
peaked after the housing bubble bust in 2006 and 2007 (Mallach 2018). Many legacy cities (i.e., 
post-industrial shrinking cities) with sustained job and population loss over the past decade have 
struggled to uplift neighborhoods with concentrated vacancy (Mallach, Alan, and Brachman 
2013). At the local level, VAD properties with cloudy titles (i.e., unclear ownership status) or 
delinquent taxes and assessments exceeding the value of the property can be characterized as 
‘dead to the housing market’, because they have high transaction costs and minimum values.  
 
VAD properties can disproportionally impact marginalized communities’ local housing markets 
by decreasing neighboring property values and impacting neighbors’ quality of life (Mallach 
2018; Whitaker, Stephan, and Fitzpatrick 2013). Neighborhoods with many VAD properties are 
associated with poor school quality (Sun et al. 2019), high crime rates (Branas et al. 2012), higher 
male unemployment rate (Appel et al. 2014), and slower growth in property sales price (Gilreath 
2013). These neighborhoods are also more likely to be home to low-income and African 
American households (Sun et al. 2019; Silverman et al. 2013) and suffer from declining home 
ownership and pessimistic perceptions of neighborhood trajectories (Mallach 2021). 
Geographically, VAD properties also tend to cluster (Weaver, Russell, and Bagchi-Sen 2013; 
Hillier et al. 2003; Reyes et al. 2016), reinforcing the concentration of income, race, and housing 
market inequality in marginalized communities and stunting economic mobility. VAD properties 
also impose fiscal burdens on the city including millions of USD in lost tax revenue and 
unrecoverable costs of managing overgrown grass, litter, and illegal dumping; securing open 
structures; and demolishing properties (Sumell 2009; Mallach 2018; Immergluck 2016). 
 
From Spatial Decision Support Systems to Human-in-the-loop Machine Learning  
Early examples of identifying and managing VAD properties through technology have used 
spatial decision support systems (SDSS). SDSSs combine spatial and aspatial data with analytical 
models and geovisualization to facilitate decision-making in a spatial context (Hopkins et al 1985; 



4 

 

Armstrong et al 1986). Such systems typically have three components: spatial database 
infrastructure, a library of models, and an interface to visualize spatial outcomes and make 
decisions (e.g. where to distribute funds across the city) (Keenan, Peter Bernard, and Jankowski 
2019). 
 
SDSSs and related analytical models have helped cities address VAD properties. The Philadelphia 
Neighborhood Information System is an early example of using statistical models (in this case, 
logistic regression) in SDSS for blight remediation purpose (Hillier et al. 2003). The system was 
designed to integrate housing information and web mapping, and to leverage predictive 
analytics to identify likely abandoned properties (Hillier et al. 2003). The City of New Orleans 
subsequently developed a decision support scorecard system using logistic regression to 
recommend sale (on the market or privately) or demolition to city officials based on local 
experts’ scoring of multiple criteria related to the property’s condition (Hillenbrand 2016). A 
similar study in the City of Youngstown, Ohio overlayed multiple factors in the ArcGIS Geographic 
Information Systems (GIS) environment to prioritize demolition based on the highest sum values 
of property scores (Morckel 2016). Others have used various machine learning models (random 
forest, decision tree, gradient boosting, etc.) to predict the VAD properties and discover how 
each factor contributes to the prediction (e.g., City of Syracuse in Appel et al. 2014; City of 
Cincinnati in Reyes et al. 2016). Yet, most previous case studies have not involved local experts 
when adapting ML models nor when creating new training data independently from historical 
records (Hill et al. 2003; Reyes et al. 2016; Appel et al. 2014) (Hillbrand 2016 is an exception). In 
addition, few studies discuss the potential ethical concerns in the input data (Reyes et al. 2016 is 
an exception).  
 
Human-in-the-loop machine learning (HILML) emphasizes combining human insights with the 
statistical data-driven model to increase model efficiency and accuracy, as well as visibility, 
explainability, trustworthiness, and transparency (Holzinger 2016; Zhou and Chen 2018). The 
traditional supervised machine learning process involves training a model on labeled datasets 
and running it through multiple probability and statistical tests to predict unlabeled data. In 
contrast, HILML highlights active human involvement in all aspects of the machine learning 
process, including strategies to create training data through human labeling (which is a preferred 
method of labeling), intelligent selection of samples and features, and explainable mechanisms 
(Monarch 2021), and thus best suited for creating unbiased predictions on complex and rare 
events, and for addressing societal problems. Few studies have operationalized HILML to 
understand planning issues (see Zheng, Zhibin and Sieber 2021 for topic modeling on smart city 
grant proposal text and Anwar 2022 for land cover mapping), but we see value in incorporating 
ground truthing and tacit expert knowledge within the data-driven model to help the model 
adopt site-specific knowledge and to allow experts to shape their tools.   
 
Civic Technology and Data for Good 
The human-in-the-loop approach speaks to the rising civic technology movement that outlines 
the power of technology to govern and serve as a voice for communities (Boehner, Kirsten, and 
DiSalvo 2016; Le Dantec 2016). Yet concerns arise as a machine learning model ‘trained’ on 
historically biased data may yield predictions that reinforce these biases and disproportionally 
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impact minoritized groups (Eubanks 2018; D’ignazio, Catherine, and Klein, 2020). In response, 
feminist and action researchers have called for the use of data and technology that respect local 
contexts, challenge power, and generate public discourses, through activities such as 
collaborating with (local) expert teams, articulating issues, building and ground-truthing data, 
and interrogating the contexts of data production (Le Dantec 2016; Loukissas 2019; D’ignazio, 
Catherine, and Klein, 2020; Williams 2020). These principles correspond with the collaborative 
and communicative planning traditions that recognize power relations, consensus-building, and 
diverse interests in planning practices (Forester 1982; Innes 1995). Our human-in-the-loop 
machine learning approach attempts to adopt these values, which we detail in the method 
section.  
 

Case Study 
The City of Savannah is a historic city (city pop 150,000), popular tourist destination, and home 
to the Savannah Port, which is one of the busiest seaports in the United States (International 
Trade Administration, n.d). Savannah is classified by the Lincoln Institute of Land Policy (n.d.) as a 
legacy city (i.e., post-industrial shrinking city) whose population peaked in the 1960s. The city has 
a growing number of residential properties that are likely to qualify as VAD, as measured through 
code violations and tax delinquency. In 2019, there were 5,372 candidate properties, within 
which 1,319 properties with code violations indicate severe VAD conditions and 1,404 properties 
with at least three years of tax delinquent history. These properties tend to be in minority-
concentrated neighborhoods with sizable Black population. In Savannah, each VAD property 
costs the city $1,300 USD annually for maintenance costs and loss of property tax revenue. By 
2019, the city had 4.7 million USD of uncollected taxes from the 5,372 potentially VAD 
residential properties.  
 
In 2019, Savannah allocated $10 million USD to acquire and redevelop 1,000 VAD properties 
over the subsequent 10 years to repair and redevelop VAD properties into affordable housing in 
neighborhoods that have been long neglected or exploited by profit-driven investors (Housing 
and Neighborhood Service. n.d.).  
 
Traditionally, Savannah’s HNSD and LBA staff identified potential VAD candidates for 
redevelopment through tacit knowledge or during tax sales or foreclosure events. As such, only 
dozens of properties are acquired every year. Since 2018, the HNSD has used a data-driven 
approach, by acquiring spreadsheet data from civic departments (e.g., police, code compliance, 
county/city revenue office), examining the parcel information visually on an online platform, 
averaging the score of each parcel’s VAD features, and conducting a field survey to augment the 
data. Yet, the process of acquiring, cleaning, mapping, and analyzing data across the entire city 
was labor-intensive and time-consuming, and the data was limited to a snapshot of conditions 
(personal communication redacted for peer review). The scoring system is also prone to error 
because some features (e.g., crime) are only significant if they are combined with others (e.g., 
tax delinquency). The city wanted to engage researchers to design a VAD-identification system 
that is not only transparent, scalable, and sustainable but also considers the local context and 
interactions between variables.  
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Data and Variables 
Independent Variables in the Machine Learning Model – VAD characteristics  
To develop the HILML model, we used data sources under seven themes: crime, code 
compliance, fire incidents, tax delinquency, vacancy status, building attributes, and market 
indicators (see Table 1). All data are from 2010-2019, except for code violations (from 2012) and 
are used to characterize a parcel-level dataset within the City of Savannah. We acquired most 
data through HNSD (see Table 1). Median neighborhood property value, five-year growth rate, 
and ratio variables are derived from existing variables in the dataset. We acquired parcel 
shapefiles, flood zone boundaries, and neighborhood boundaries from Savannah Area GIS Open 
Data (n.d.). Vacancy probability is compiled from a mix of USPS-generated records, field survey, 
and specific code violations (see S.I. Section B). Data with temporal records (e.g., crime, tax, fire, 
and code violations) are weighted: an incident is weighted higher if it is more recent and the 
type particularly contributes to VAD (e.g., drug crime or code violation that indicates unsafe 
structure, see S.I. Section B for details).  
 
Table 1: Independent variables (or features) per parcel fed into the machine learning model for 
land or structure. See S.I. Section B for variables used in labeling and extra processing details. 

Variable Year Description  Source 

Weighted Crime 2010-2019 The number of crime incidents weighted by recency 
and type. 

Police Department  

Weighted Drug Crime  2010-2019 The number of drug crime incidents weighted by 
recency. 

Police Department 

Weighted Active Code 
Violation 

2012-2019 The number of active code violations weighted by 
recency and type. 

Code Compliance 

Weighted Fire Incidents  2010-2019 The number of fire incidents weighted by recency. Fire Department 

Delinquent Tax 2010-2019 Total amount of delinquent city and county tax and 
unpaid special assessment. The unit is dollar. 

County Tax Office 
City Tax Office 
City Revenue Office 

Total Delinquent Years 2010-2019 The number of years that the property has tax 
delinquency or unpaid special assessment. 

County Tax Office 
City Tax Office 
City Revenue Office 

Unpaid Special Assessment 
Tax Pct 

2010-2019 The percentage of unpaid special assessment in total 
delinquent tax.  

Derived  

Vacancy Probability  2019 The probability that the property is vacant. See S.I. 
section B for more details.  

USPS Service 
Records; Field Survey  

Land Size  2019 The size of land. The unit is acre.  Assessor  

Qualified Sales Count  2010-2019 The count of qualified sales, which often measures 
title transfers for properties under market value.  

Assessor  

Unqualified Sales Count  2010-2019 The count of unqualified sales. The sales can occur 
due to heir inheritance or foreclosure and often sold 
below market values.  

Assessor  

Year Last Sold 2010-2019 The most recent year that the property was sold Assessor 

Property Value 2019 Property values estimated by computer assisted 
mass appraisal (CAMA). The unit is 1,000 dollars.  

Savannah GIS Open 
Data Parcel Shapefile 

Five-year Growth  2014, 2019 Five-year growth in property value, calculated as 
(CAMA_2019 – CAMA_2014)/CAMA_2014*100. The 
unit is percentage.  

Derived  

Median Neighborhood 
Property Value 

2019 The median neighborhood value of land or structure 
in the neighborhood. The unit is 1,000 dollars. 

Derived  
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Human-in-the-loop Machine Learning (HILML) 
In the following subsections, we outline how the values of civic technology for good, including 
articulating issues, collaborating with local expert teams, building and ground-truthing data, 
facilitating consensus, and interrogating the contexts of data production, are operationalized in 
the human-in-the-loop machine learning workflow (see Figure 1).   
 

 
Figure 1: Human-in-the-loop machine learning workflow. Steps 1-3 and steps 4-7 are iterated 
multiple times with local experts. The icons represent which ‘civic technology for good’ values 
(and human interactions) are adopted in the process.  
 
Articulating Issues  
We first sent a Q&A document to the HNSD experts to learn about the process of property 
regeneration (i.e., the issues) from the administration perspective and worked with them at their 
offices in Savannah and online to codify their process of identifying VAD properties and then 
‘regenerating’ them for affordable housing (see S.I. Section C for infographic). From the 
standpoint of HNSD, the biggest challenge is managing the decentralized data, that flows 
between institutions, and leveraging the data for effective decision-making.  
 
Feature Selection and Sampling 
We created maps of Savannah symbolized by variables listed in Table 1 and examined them in 
person with the experts to rule out potential anomalies (see S.I. Section D). This discussion 
resulted in 5,372 residential structures (single-family, 2-4 family, and townhouse) and land that 
may be vacant, have no flood risks, and with records in drug crime, tax issues, code violations, 
and fire incidents. 
 
We deployed a mix of random sampling and active learning techniques (uncertainty and diversity 
sampling) to create the training samples for expert labeling that can maximize the learning of the 
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model. Uncertainty sampling selects data points that are close to decision boundaries and thus 
have maximum uncertainty (Lewis, David, and Catlett 1994), while diversity sampling rebalances 
the ratio of data points to amplify rare events (Monarch 2021). We conducted three rounds of 
sampling, each with 100 samples (a total of 300 samples). The first two rounds emphasized 
geographic diversity (e.g., properties from various racial-majority neighborhoods) and the 
representations of various types of VAD properties (properties from clusters identified through 
the K-means algorithm) in the samples, while the third round generated random samples (see 
S.I. Section D).  
 
Expert Labeling, and Label Consistency  
We asked a team of four housing experts to classify a subset of properties (n=300) as VAD or not; 
this serves as a dependent variable for the model’s training data. The experts were two males 
and two females ranging in age from their 30s to 65. They have experience in the field of land 
and housing for 25 years, 15 years, 12 years and 3 years and have been working for the City of 
Savannah for 8 years, 3 years (x2), and 2 years. They had no prior experience in ML nor in 
labeling training data. 
 
In July 2021, we sent each expert a spreadsheet of properties and their characteristics (see Table 
1).  In the spreadsheet, each column is a parcel, and each row is a parcel attribute. The experts 
could choose labels (i.e., VAD and Not VAD) from a dropdown cell and write comments to clarify 
how they made the decisions. To improve interpretability of the variables for human labeling, we 
disaggregated the weighted variables by their components (see S.I. Section D). One expert 
labeled 150 samples, and the others labeled 50 samples, respectively.  
 
After the labeling, we asked experts via e-mail to discuss labels that either countered our 
instincts or were deemed as highly uncertain by the ML algorithm in Python modAI package. This 
process helped expose nuances in the interactions of variables, differentiate whether false labels 
were due to low sample points or human error, and uncover tacit variables being used in the 
reasoning.  
 
We found that properties with very similar conditions were labeled differently, presenting 
opportunities to highlight implicit assumptions in the labeling process and to streamline the 
method to ensure equity across the process. To find these properties, we fitted decision trees to 
labeled data of lands and structures respectively and visualized the branching. For example, if 
one (or a small set of) VAD property took multiple splits to be separated from a large group of 
non-VAD properties, then it (they) was a good candidate for discussion (see S.I. Section D for 
visualization). When a property was labeled differently by the experts, we presented the decision 
trees and labeled samples to the experts to agree upon a resolution.  
 
Machine Learning, Model Validation, and Bias Analysis  
We used a random forest algorithm to classify properties into VAD and Not VAD properties. The 
random forest (RF) model captures nonlinear relationships between variables by creating a 
“forest” of decision trees in which each tree decides on a sequence of variable and variable 
values to split the data so that it minimizes label differences in each branch (Liaw, Andy, and 
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Wiener 2002). We chose a random forest model because it has higher model accuracy than 
logistic regression and the VAD status depend on a combination of variables (e.g., crime with tax 
delinquency); random forest can capture such feature interactions (Basu et al. 2018). Since 
feature correlation impacts feature importance scores in the random forest model, we ran 
Spearman’s rank-order correlation table between all feature pairs. Lastly, we tuned the 
hyperparameters of the random forest model (see S.I. Section E). 
 
In total, we ran eight random forest models. We used Python (with scikit-learn) for machine 
learning tasks and R (with tidyverse, sf, and tmap) for data wrangling and mapping. 
These models are differentiated by 1) whether they had full or reduced features, 2) whether 
they were trained with 200 or 300 labeled samples, and 3) whether they were trained on lands 
or structures. To reveal what variables were most instrumental at predicting the VAD properties, 
we reported drop-column feature importance score for each feature at each model. The drop-
column importance method is favored over the default importance score method in RF (i.e., 
mean decrease in impurity) because our features have different scales of measurement (Strobl 
et al. 2007). A high drop-column importance score means the accuracy of the model dropped 
significantly without that feature. We use partial dependence plots to show how well each 
feature predicts outcomes (see S.I. Section E).  
 
To evaluate the models, we used 5-fold cross-validation, which is the average accuracy of five 
different training and test sets, with a ratio of 80-20 split. We also use the out-of-bag (OOB) 
score, which is the average accuracy of sample data predicted by decision trees in the random 
forest without these samples. Both metrics report the percentage of samples that are not in the 
training set and were correctly predicted.  
 
To further validate the robustness of the final model predictions against human-identified VAD 
properties, we compared the model predictions with 1) the geographic distribution and VAD 
types (see S.I. Section F for criterion of VAD types) of human-generated VAD targets (only in a 
few neighborhoods) in 2019 and 2) human judgements (by HNSD experts) through manually 
checking all records of 100 predicted properties in 2021. As such, we could better understand 
how well the predictions trained on 2019 data applied to 2021 data and whether extra 
contextual information about the properties (e.g., field visits) contributed to more holistic 
assessments. We also identified other sources of biases in the machine learning process by 
questioning the context of data production for all the features (see S.I. Section F). Specifically, we 
mapped out how certain neighborhoods have low percentage of code cases from 311 calls (a 
major source of input for the code violation dataset) and ran linear regression to reveal 
neighborhood characteristics that correlate with few 311 calls.  
 

Results 
Important features in trained models 
We report the drop-column feature importance score of all features in eight random forest 
models in Table 2 and find that tax (total delinquency and delinquent years) are the most 
consistently important variables in predicting VAD properties across eight models, followed by 
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crime and active code cases. For example, when using model S4 to predict vacant land, including 
total tax delinquency and delinquent year as a variable improves model accuracy by 13.3%. Drug 
crime and the percentage of special assessment tax in total tax delinquency positively contribute 
to model accuracy in some models, but not the others.  
 
This outcome is aligned with the feedback we received from the experts, as they identified 
variables related crime, code violations, tax issues, and low property value as key to their 
decisions. Other variables’ role in predicting VAD properties may be contextual. For example, 
property value is not a necessary condition for VAD property, but a VAD property with low 
property value is particularly attractive to the city as it indicates low acquisition cost. The 
experts’ interpretation was important because property value did not significantly improve 
model accuracy in any model, potentially because the interpretation of a “low” property value is 
relative to housing types, neighborhoods, and land size.  
 
Other variables (e.g., unqualified sales, growth rate etc.) that indicated VAD conditions, in 
theory, also have varying importance that cannot be separated from random stochasticity. Their 
low importance scores may be because their contribution is minimal compared to key variables 
that explain most of the classifications (i.e., tax, crime, and code cases). However, we note that 
importance scores come from a skewed representation of the samples (see S.I. section E). When 
considering the distribution of values in the global sample, the importance of crime and code 
violations may be overestimated, while the importance of tax delinquency may be 
underestimated.   
 

Table 2: Drop-column importance score in all random forest models.  

 All Features  Reduced Features 
 S1: 200 samples  S2: 300 samples  S3: 200 samples  S4: 300 samples  
 Land  Structure  Land  Structure Land  Structure Land  Structure 
Feature Importance Score (%) 
Weighted Crime Count  2.50 (R2) 5.07 (R1) 2.86 (R2) 3.59 (R2) 3.75 (R3) 6.70 (R1) 2.86 (R3) 4.62 (R2) 
Weighted Drug Count  -1.18* -0.87* 0.95* 0.00* 2.57* -1.70* 3.81 (R2) -1.54 
Weighted Active Code Cases -1.18* 1.74 (R3) 0.00* 2.05 (R4) 4.93 (R1) 3.37 (R3) 1.91 (R4) 1.03 (R3) 
Weighted Fire Count  -1.18 0.83 -2.86* 1.03* NA NA NA NA 
Tax Delinquency & 
Delinquent Years 3.53 (R1) 3.37 (R2) 8.57 (R1) 8.72 (R1) 4.85 (R2) 5.00 (R1) 13.3 (R1) 5.64 (R1) 
Special Assessment Tax Pct  -4.85* 0.87 0.95 2.56 (R3) -3.60 1.63* -2.86 1.03 (R3) 
Vacancy Probability  -2.35* 0.91* -0.95* 1.03* NA NA NA NA 
Property Value  -3.60* 0.04* -0.95* 0.51* -2.43 -0.91* 0.00* -1.54 
Land Size  -3.53* 0.00* -0.95* -1.03 NA NA NA NA 
Qualified Sales -3.60* 0.04* 0.95* 0.00* NA NA NA NA 
Unqualified Sales -3.60* 0.04 -0.95* 1.03* NA NA NA NA 
Year Last Sold  -3.60* 0.04 -0.95* -0.51* NA NA NA NA 
Growth Rate  -3.60* -0.87* -0.95* 1.54* NA NA NA NA 
Median Neigh PV -3.60* 0.00* 0.00* 1.03* NA NA NA NA 

Evaluation Metrics (%) 
Cross Validation Accuracy  87.94 90.65 91.43 87.69 91.62 91.45 95.24 87.69 
OOB score 91.46 91.53 88.57 87.18 92.68 91.53 90.48 88.21 



11 

 

* Indicates that the number fluctuates above or below zero depending on the random state of the random forest 
algorithm and thus deemed uncertain. The unit of the number is %. R in parenthesis indicates the ranking of 
features that have stable contributes to at least 1% drop-column importance. Numbers bolded are important for 
each model. Our final model is set 4 (S4).  

 
Model Accuracy and Validation  
Overall, the model accuracy (with both cross validation and OOB score) varies from 87-95% for 
land and 87-92% for structures (see Table 2). Reducing the features to a few key variables slightly 
improves the model accuracy, indicating that the variability in the additional variables may 
confuse the model more than providing useful information. Given these comparisons, we chose 
the model trained with reduced features and 300 samples as our final model to give predictions 
(in Fig. 3).  
 
To further validate our model predictions, we compared machine-predicted VAD properties with 
a list of VAD targets labeled by HNSD staff in 2019 through a field survey. We found that model 
prediction agrees with 72% of the human found targets. The ground-truth accuracy may be even 
higher. Figure 3 shows that machine predicted VAD properties are more spatially diverse and 
larger than human labeled targets, which is not surprising because a field survey is often 
confined to selected neighborhoods. Our model identified 1,234 VAD properties among 5,327 
candidates, while the human-generated list contains 693 properties. Within the 693 human 
found properties, 286 (41%) did not meet the basic requirements to be machine learning 
candidates, because they either have zero records in code violation, tax delinquency, drug 
records, fire incidents, or have flood risks. These properties are excluded from the comparisons. 
The experts may have labeled them simply due to vacancy (although vacant land alone does not 
qualify as a VAD property) or our data do not reflect the current VAD conditions of the 
properties because they may be outdated.  
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Figure 3: Compare model predicted VAD properties (left) with human found VAD properties 
(right). 
 
By comparing the percentage of VAD types (i.e., VAD status driven by various factors) between 
machine vs. human, we found that machine predicted VAD land parcels tend to have more crime 
(8.1% vs. 6%), tax delinquency (100% vs. 67.5%), and code violation (29.7% vs. 24.4%) types, and 
less low property values (91% vs. 97.5%) type. For land with structures, machine predicted VAD 
properties tend to have more crime (44.6% vs. 27%) and tax delinquency (98% vs. 88%) types, 
and fewer code violation (33.8% vs. 43.3%) and low property values (68% vs. 72%) types. The 
VAD types are derived by looking at whether crime, tax, code, and property value of a property 
passes certain thresholds to be significant at determining the VAD status (see S.I. Section F).  
 
Lastly, we found that only 66% of labels in model predictions using the 2019 input data stayed 
the same with 2021 input data. For the 20% properties that changed from Not VAD (2019) to 
VAD (2021), some may have new conditions that contributed to VAD status. For the 13% that 
changed from VAD (2019) to Not VAD (2021), some may already receive interventions (a few 
experienced tax sales) or simply have been mislabeled in 2019. Thus, while streamlining data is 
difficult, continuing investments to run the model with updated data is crucial to keep the model 
accuracy rate.  
 
Bias Analysis  
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Our model builds on data collected from decentralized and heterogeneous sources. We found 
that neighborhoods with low home-ownership rate, low-income, and high concentration of 
African Americans tend to have less code cases coming from 311 calls (see maps in S.I. Section 
F), (as in Kontokosta, Constantine, Hong, 2021). Thus, these neighborhoods may either have less 
accurate code violation data or experience ‘over-policing’ from code compliance officers. We 
listed biases identified for each variable in S.I. Section F.  
 
Discussion and Conclusion 
In this paper, we presented a human-in-the-loop approach to develop a random forest model 
that predicts vacant, abandoned, and disinvested (VAD) properties in the City of Savannah, 
Georgia. Different from traditional machine learning approaches that focus solely on 
optimization, we involved local experts from the Housing and Neighborhood Services 
Department and Chatham County / City of Savannah Land Bank Authority in building, training, 
and evaluating the model. We articulated issues of property regeneration and identified 
appropriate places for machine learning intervention before jumping into the application; we 
built our own training data through active learning techniques, ground-truthed our predictions 
with human-found VAD targets, and examined how well the prediction held over time. We used 
interpretable machine learning methods (e.g., decision trees and feature importance) to 
facilitate learning and consensus among local experts. Finally, we identified neighborhoods that 
were vulnerable to the context that code violation data were collected.  
 
We found that tax delinquency (and delinquent years), crime history, and code violations are the 
three most important features at identifying VAD properties. The predictions from the model 
agreed with the expert labels about 72% of the time. And the model could predict about 66% of 
labels after two years. To reach a higher accuracy, the data should be annotated using 
information from field visits. The comparison also revealed that machine-generated predictions 
are more spatially diverse and less focused on code violations and low property values than 
human-identified candidates. We recommend that the city prioritize building database 
connections to tax, crime, and code records, as these are the main determinants for the VAD 
status. 
 
Our process suggested that developing a machine learning model using a human-in-the-loop 
approach was time-consuming and challenging yet rewarding. Involving housing experts helps us 
contextualize the selection of variables, build training data, adapt the model, and validate the 
model outcomes. In return, some experts reported that the labeling process was enlightening, as 
it helped organize their thoughts in making decisions and reflect upon why they choose certain 
outcomes for the parcels. After the process, they felt more confident and knowledgeable about 
deploying the model in future operations. The human factor in ML also brings new challenges: 
experts have discrepancies at labeling VAD properties. Our HILML process highlighted these 
discrepancies and thus facilitated more agreements of the decision criteria. Thus, the HILML 
approach streamlines the identification process and makes it more transparent.      
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However, our study also has some limitations. First, our model focuses on challenges at the 
institutional scales rather than challenges of the property owners. As such, we did not 
incorporate voices and inputs from communities and property owners, reinforcing a transactive 
mode of governance (where citizens are consumers of public services) rather than a relation 
mode (where citizens are co-creators). Second, updating the model requires data infrastructure 
that are dependent on third-party services, which is a common struggle in many smart city 
initiatives (Kitchin 2014). Lastly, while the model suggests candidates based on VAD 
characteristics, the acquisition of VAD candidates in real life is still political, as many minority 
communities are concerned with the impacts of governmental interventions. Altogether, we are 
unsure whether the investments to generate such model outweigh the burdens of maintenance 
and education needed for the model to sustain. Future work should examine these issues and 
recreate this approach for other cities and case studies.  
 
In conclusion, this research presents a case study that illustrates a human-in-the-loop machine 
learning approach for classifying land and residential structures as potentially in need of 
attention. By using a collaborative technique that engages experts while using large datasets and 
statistical analysis, we were able to generate new insights into how to potentially automate or 
improve the local government’s ability to identifying vacant, abandoned, and disinvested 
properties. The result is a more reliable method for managing assets in a municipal setting. This 
HILML approach may be used in other planning efforts, such as incorporating local knowledge to 
detect missing buildings from satellite imagery, supporting community needs by training models 
on crowd-sourced data, or improving machine-generated urban design scenarios with human 
feedback. We suggest that more researchers and practitioners use machine learning in their 
planning efforts, but also incorporate human input and expertise as they develop and test these 
models.  
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